Measuring the mass, volume, and density of microgram-sized objects in fluid

نویسندگان

  • Shirin Mesbah Oskui
  • Heran C Bhakta
  • Graciel Diamante
  • Huinan Liu
  • Daniel Schlenk
  • William H Grover
چکیده

Measurements of an object's fundamental physical properties like mass, volume, and density can offer valuable insights into the composition and state of the object. However, many important biological samples reside in a liquid environment where it is difficult to accurately measure their physical properties. We show that by using a simple piece of glass tubing and some inexpensive off-the-shelf electronics, we can create a sensor that can measure the mass, volume, and density of microgram-sized biological samples in their native liquid environment. As a proof-of-concept, we use this sensor to measure mass changes in zebrafish embryos reacting to toxicant exposure, density changes in seeds undergoing rehydration and germination, and degradation rates of biomaterials used in medical implants. Since all objects have these physical properties, this sensor has immediate applications in a wide variety of different fields including developmental biology, toxicology, materials science, plant science, and many others.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-194: Follicular Fluid Adiponectin Concentrations in Follicles in The Luteal Phase of The Estrous Cycle in Dairy Cows

Background: Adiponectin is an adipocytokines which is secreted from the adipose tissue of human and domestic animals. No information is available regarding the follicular fluid adiponectin concentrations in dairy cows. Therefore, the aim of the present study was to determine the follicular fluid adiponectin concentrations in different-sized follicles in the luteal phase of the estrous cycle in ...

متن کامل

MATHEMATICAL MODELLING OF THE EFFECT OF FOAM DEGRADATION ON MOULD FILLING IN THE GREY IRON EPC PROCESS

In this investigation a new model was developed to calculate gas pressure at the melt/foam interface (Gap) resulting from foam degradation during mould filling in the Lost Foam Casting (LFC) process. Different aspects of the process, such as foam degradation, gas elimination, transient mass, heat transfer, and permeability of the refractory coating were incorporated into this model. A Computati...

متن کامل

Segregation patterns of an equidensity TiO2 ternary mixture in a conical fluidized bed: CFD and experimental study

In this study, an Eulerian-Eulerian multi-fluid model (MFM) was used to simulate the segregation pattern of a conical fluidized bed containing ternary mixtures of equidensity TiO2‌ particles. Experimental 'freeze–sieving' method was employed to determine the axial mass fraction profiles of the different-sized particles, and validate the simulation results. The profiles of mass fraction for larg...

متن کامل

Applying a Modified Two-Fluid Model to Numerical Simulation of Two-Phase Flow in the Membrane Chlor-Alkali Cells

In this study, gas evolution in a vertical electrochemical cell is investigated numerically with a modified two-fluid model. The mathematical model involves solution of separate transport equation for the gas and liquid phases with an allowance to inter-phase transfer of mass and momentum. The governing equations are discreted via the finite volume technique and then are solved by ...

متن کامل

Thermal performance enhancement of automobile radiator using water-CuO nanofluid: an experimental study

In the present paper, the effect of water-CuO nanofluid on the radiator heat transfer of an automobile, Peugeot 405 XU7 engine type is investigated experimentally. The experiments are carried out for the radiator water (water-ethylene glycol with a volume fraction of 80-20, respectively) as a base fluid and water-CuO nanofluid with the volume fraction of 0.5% and 1%. Sodium Dodecyl Sulfate (SDS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017